## A Short Synthesis of Dipalmitoylphosphatidylinositol 4,5-Bisphosphate via 3-O-Selective Phosphorylation of a 3,4-Free Inositol Derivative

Fushe Han, Minoru Hayashi,<sup>†</sup> and Yutaka Watanabe\*<sup>†</sup>

Venture Business Laboratory, Ehime University, Matsuyama 790-8577

<sup>†</sup>Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790-8577

(Received September 20, 2002; CL-020812)

Dipalmitoylphosphatidylinositol 4,5-bisphosphate was conveniently synthesized via the regioselective phosphorylation of L-1,2-O-cyclohexylidene-5,6-di-O-(o-xylylene phosphoryl)myo-inositol derived from 1,2-O-cyclohexylidene-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)-myo-inositol.

Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2, 6] is a key phosphoinositide due to its role as the precursor of at least three second-messenger molecules,<sup>1</sup> such as myo-inositol 1,4,5-trisphosphate, PI(3,4,5)P3, and diacylglycerol. More recent studies have proved PI(4,5)P2 itself is also a second messenger.<sup>2</sup> In addition, PI(4,5)P2 may also be involved in several other cellular processes, including exocytosis, cytoskeletal regulation and intracellular trafficking of vesicles.<sup>3</sup> Natural PI(4,5)P2 from bovine brain is commercially available. To modify PI(4,5)P2 as a biological tool, aiming at disclosing its physiological functions, chemical synthesis is indispensable. Many PI(4,5)P2 analogs have been synthesized so far from *myo*-inositol,<sup>4</sup> L-(-)quebrachitol,<sup>5</sup> and D-glucose.<sup>6</sup> In these cases, however, long routes were required and/or the overall yield was low because many protection-deprotection sequences by using monofunctional protecting groups to differentiate the hydroxyls have been adopted. Therefore, developing a more practical and efficient strategy for the synthesis of PI(4,5)P2 is still significant.

In this communication, we report a concise synthesis of a D-PI(4,5)P2 dipalmitoyl analog, that, as a key reaction, involves the regioselective phosphorylation of the vicinal 3,4-diol in L-1,2-O-cyclohexylidene-5,6-di-O-(o-xylylene phosphoryl)myo-inositol (3). The simultaneous deprotection of phosphates and diol moieties at the final stage is also noteworthy to accomplish the convenient synthesis.

As a key intermediate protected by two bifunctional protecting groups, L-1,2-O-cyclohexylidene-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)-myo-inositol (L-1) was chosen, this time. The enantiomer, L-1 has been the "waste" one until now, whereas both enantiomers of 1 can be readily derived from the corresponding D- and L-1,2-cyclohexylidene-myoinositol obtained by the enzyme-aided optical resolution with excellent yields.<sup>7</sup> The opposite D-isomer has been demonstrated to be useful for the synthesis of natural D-series of various inositol phosphates such as  $PI(3,4,5)P3^8$  and phosphatidylinositol dimannopyranoside (PIM2).<sup>9</sup> Thus, phosphorylation of diol L-1 { $[\alpha]_D^{26}$  +13.2 (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>)},<sup>10</sup> using o-xylylene N,N-diethylphosphoramidite (XEPA)<sup>11</sup> afforded bisphosphate 2 { $[\alpha]_D^{26}$  -3.9, (c 3.0, CHCl<sub>3</sub>)}, which was subsequently converted to diol 3 { $[\alpha]_D^{26} = +4.23$ , (c 1.56, CHCl<sub>3</sub>) by employing TBAF and acetic acid at -20 °C. Such reagents as well as low temperature were necessary to prevent the migration of phosphate groups.



Scheme 1. Reagents and conditions: (i) *o*-xylylene *N*,*N*-diethylphosphoramidite (XEPA) (3.2 eq.), tetrazole (5 eq.),  $CH_2Cl_2$ , r.t., 1 h, then *m*CPBA (4 eq.), -78-0 °C, 45 min, 95%; (ii) TBAF·3H<sub>2</sub>O (3 eq.), AcOH (4 eq.), THF, -20 °C, 12 h, 81%; (iii) 4 (3 eq.), 2,6-lutidine (5 eq.), pyridinium tribromide (4 eq.), -42-0 °C, 1.5 h, 88%; (iv) H<sub>2</sub>, 10%-Pd/C (25 wt%), AcOEt, r.t., 2.5 d, quant.

Our attention was then turned to the regioselective phosphorylation of **3**. Thus, phosphorylation of diol **3** with 1,2-di-O-palmitoyl-*sn*-glycerol phosphite **4** in the presence of pyridinium tribromide and 2,6-lutidine<sup>12</sup> was found to exclusively occur at the OH-3 position to afford **5** in high yield.<sup>13</sup> The phosphorylation position was confirmed by transforming **5** into its 6-O-chloroacetyl derivative and analyzing its <sup>1</sup>H NMR spectrum, combined with H–H COSY analysis.

The unprecedented finding of the selective phosphorylation of the 3,4-diol opens a concise way to prepare not only PI(4,5)P2 but also other PIPn and IPn derivatives using suitably protected 3,4-free inositol derivatives. There have rarely been reports on their selective reaction and such derivatives were restricted to 1, 2: 5, 6-diketals such as dicyclohexylidene and diisopropylidene. Their acylation<sup>14</sup> and carbonylation,<sup>15</sup> mainly via the stannylene derivatives were shown to proceed regioselectively at the 3-position, although silylation and benzylation were unsuccessful.<sup>16</sup> The diketals were distorted by the *trans*-ketal function, therefore, the reactivity of **3** seems to be different from these diketals. Indeed, 1,2-*mono*ketals bearing the 3,4-dihydroxyl moiety similar to **3** were subjected to regioselective silylation as well as acylation.<sup>17</sup> According to coupling constants of inositol methine protons in the NMR<sup>18</sup> for **3**, the conformation of **3** was suggested to deviate from a normal chair form to some extent, making 3-OH less crowded and 4-OH sterically hindered, while the conformation of 1,2-*O*-isopropylidene-*myo*-inositol and its cyclohexylidene analog<sup>18</sup> takes the chair form.

The final deprotection of **5** was eventually performed at a single procedure, when hydrogenolysis was carried out in a commercial grade of AcOEt as a solvent, giving rise to the target PI(4,5)P2 { $[\alpha]_D^{26}$  +5.41, (triethylammonium salt, *c*0.61, CHCl<sub>3</sub>)} in quantitative yield. In place of AcOEt, MeOH as a protic medium, that is commonly employed for the final deprotection of PIPns,<sup>6b,c</sup> was insufficient to remove the cyclohexylidene group. The details of such different results will be discussed elsewhere.

In conclusion, the successful regioselective phosphorylation of **3** at the OH-3 position and the spontaneous deprotection at the final stage made the present methodology advantageous. The method provides the shortest route with good yield (68% based on the **L-1**) for the synthesis of PI(4,5)P2 as compared with the reported methods. It could be scaled up to gram scale. In addition, the distinct reactivity of 3- and 4-hydroxyls makes 1,2-*O*cyclohexylidene-3,4-*O*-(tetraisopropyl disiloxane-1,3-diyl)*myo*-inositol more versatile as a synthetic intermediate for the synthesis of inositol phosphates and phosphatidyl inositols.

We are grateful to the Center for Cooperative Research and Development of Ehime University for MS analysis.

## **References and Notes**

- 1 N. Divecha and R. F. Irvine, *Cell*, **80**, 269 (1995).
- 2 T. F. J. Martin, Annu. Rev. Cell Dev. Biol., 14, 231 (1998).
- 3 K. Hinchliffe and R. Irvine, *Nature*, **390**, 123 (1997).
- 4 For the progress in this area, see: a) Y. Watanabe, T. Nakamura, and H. Mitsumoto, *Tetrahedron Lett.*, 42, 7407 (1997). b) A. Toker, M. Meyer, K. K. Reddy, J. R. Falck, R. Aneja, S. Aneja, A. Parra, D. J. Burns, L. M. Ballas, and L. C. Cantley, *J. Biol. Chem.*, 269, 32358 (1994). c) C. E. Dreef, C. J. J. Elie, P. Hoogerhout, G. A. V. Marel, and J. J. Van Boom, *Tetrahedron Lett.*, 29, 6513 (1988).
- 5 L. Qiao, Y. Hu, F. Nan, G. Powis, and A. P. Kozikowski, *Org. Lett.*, **2**, 115 (2000).
- 6 a) J. R. Falck, U. M. Krishna, and J. H. Capdevila, *Tetrahedron Lett.*, 40, 8771 (1999). b) Q. M. Gu and G. D. Prestwich, *J. Org. Chem.*, 61, 8642 (1996). c) J. Chen, A. A. Profit, and G. D. Prestwich, *J. Org. Chem.*, 61, 6305 (1996).
- 7 a) L. Ling and S. Ozaki, *Tetrahedron Lett.*, 34, 2501 (1993). b)
   L. Ling and S. Ozaki, *Carbohydr. Res.*, 256, 49 (1994).
- 8 a) Y. Watanabe, H. Hirofuji, and S. Ozaki, *Tetrahedron Lett.*,
  35, 123 (1994). b) Y. Watanabe, M. Tomioka, and S. Ozaki, *Tetrahedron*, 51, 8969 (1995). c) Y. Watanabe and M.

Nakatomi, Tetrahedron Lett., 39, 1583 (1998).

- 9 a) Y. Watanabe, T. Yamamoto, and S. Ozaki, *J. Org. Chem.*,
  61, 14 (1996). b) Y. Watanabe, T. Yamamoto, and T. Okazaki, *Tetrahedron*, 53, 903 (1997).
- 10 This time, L-1 was obtained by the resolution of 1,2-O-cyclohexylidene-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)-5-O-triethylsilyl-6-O-(S)-(O-acetyl)mandeloyl-myo-inositol<sup>8c</sup> in stead of the enzymatic method.<sup>7</sup>
- a) Y. Watanabe, Y. Komoda, K. Ebisuya, and S. Ozaki, *Tetrahedron Lett.*, **31**, 255 (1990).
   b) Y. Watanabe, Y. Komoda, and S. Ozaki, *Tetrahedron Lett.*, **33**, 1313 (1992).
- 12 Y. Watanabe, E. Inada, M. Jinno, and S. Ozaki, *Tetrahedron Lett.*, 34, 497 (1993).
- 13 Physical and spectral data of 5, that consists of two diastereomers based on the phosphorus at the D-1 position: Rf = 0.65 (Hex : AcOEt = 1 : 3); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ: 7.30-7.39 (m, 26H), 5.58 (complex, 4H, ArCH<sub>2</sub>O), 5.30 (t, 2H, *J* = 13.6 Hz, ArCH<sub>2</sub>O), 5.04–5.23 (complex, 22H in ArCH<sub>2</sub>O, glyceryl sn-2-H), 4.85 (br q, 2H, InsH-4), 4.60-4.71 (complex, 3H, InsH-1 & H-2), 4.55 (br t, 1H, *J* = 4.0 Hz, InsH-2), 4.40 (br t, 2H, InsH-5), 4.22-4.32 (complex, 8H, InsH-6, H-3, glyceryl sn-3-H or sn-1-H), 4.12 (dd, 4H, J = 14.0, 7.2 Hz, glyceryl sn-3-H or sn-1-H), 2.29 (m, 8H, Pal H-2), 1.82 (m, 4H, cyclohexylidene H), 1.57-1.65 (br, 24H, Pal H-3 and cyclohexylidene H), 1.25 (br, 96H, Pal H4-15), 0.88 (t, 12H,  $J = 6.2 \text{ Hz}, \text{ CH}_3$ ; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$ : 173.36, 173.22, 173.10, 172.84 (C=O), 128.30-135.89 (complex, aromatic C), 112.10 (spiral C), 79.57-80.13 (complex, 4C, InsC-5, C-4), 75.90-76.26 (m, 2C, InsC-1), 74.57 (m, 2C, InsC-2), 68.65-71.70 (complex, 14C, InsC-6, glyceryl sn-2-C and ArCH<sub>2</sub>O), 65.90 (m, 2C, glyceryl sn-3-C), 61.80, 61.67 (s each, 2C, glyceryl sn-1-C), 37.45, 37.41 (s each, 2C, cyclohexylidene C), 34.98 (2C, cyclohexylidene C), 34.15, 34.11, 34.40 (s each, 4C, C-2 in Pal), 31.91, 31.57 (s each, 4C, C-14 in Pal), 29.08-29.69 (complex, C4-13 in Pal), 24.82 (C-3 in Pal), 23.79, 23.65, 22.67, 22.64 (s each, cyclohexylidene C), 21.04 (C-15 in Pal), 14.11 (C-16 in Pal), signals for InsC-3 was overlapped with those of CDCl<sub>3</sub>; <sup>31</sup>P NMR (CDCl<sub>3</sub>, 162 MHz)  $\delta$ : -0.28 (1P), -0.32 (1P), -0.46 (1P), -0.60 (2P), -0.68 (1P); Anal. Calc. for  $C_{70}H_{107}O_{19}P_3$ : C, 62.48; H, 8.02%; Found: C, 62.10; H, 8.02%.
- 14 R. Baker, J. J. Kulagowski, D. C. Billington, P. D. Leeson, I. C. Lennon, and N. Liverton, J. Chem. Soc., Chem. Commun., 1989, 1383.
- 15 a) T. M. Mayer and R. R. Schimdt, *Liebigs Ann./Recl.*, **1997**, 859. b) G. M. Nicholas, P. Kovac, and C. A. Bewley, *J. Am. Chem. Soc.*, **124**, 3492 (2002).
- 16 S. K. Chung and Y. Ryu, Carbohydr. Res., 258, 145 (1994).
- 17 "Studies in Natural Products Chemistry," ed. by A. U. Rahman, Elsevier (1996), Vol. 18, Part K, p 391.
- 18 Coupling constants (*J*, Hz) of inositol methine protons H1– H2, H2–H3, H3–H4, H4–H5, H5–H6, H6–H1: compound **3** (in CDCl<sub>3</sub>): 5.6, 3.7, 7.8, 7.4, 8.8, 6.4; 1, 2 : 4, 5-di-*O*cyclohexylidene-*myo*-inositol (in CDCl<sub>3</sub>): 4.6, 4.8, 9.3, 9.3, 10.8, 6.3 (see also reference 16 for 1, 2 : 4, 5- and 1, 2 : 5, 6di-*O*-isopropylidene-*myo*-inositol); 1,2-*O*-cyclohexylidene*myo*-inositol (in CD<sub>3</sub>OD): 4.9, 4.2, 9.5, 9.3, 10.1, 7.3 (see also reference 7b).